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The topological density of a three-dimensional net is currently available after

determining its entire coordination sequence. This paper shows that its value can

be obtained directly from the set of cycles of the quotient graph of the net. A

geometrical tool, the cycles ®gure of the net has been developed for this purpose.

Its construction as a convex polyhedron with triangular faces is described as well

as its use for topological density calculations. An exact expression is derived for

three-dimensional nets and extended to arbitrary n-dimensional nets. Addi-

tionally, this paper describes applications to three-dimensional lattices and nets,

n-dimensional diamonds and lonsdaleites.

1. Introduction

The topological density (�) of a net is a well known numerical

invariant proposed for classi®cation and analysis of crystal

structures (O'Keeffe, 1991a; Bader et al., 1997). This concept

was initially de®ned as the limit for r!1 of the local

topological density �r =
P

k = 1,r Ck=rn, where Ck and n are the

kth coordination number and the dimension of the net,

respectively. For numerical calculations, however, it was

observed that coordination numbers Ck could be written as a

periodic set of polynomials of k (Grosse-Kunstleve et al.,

1996). One obtains the topological density by averaging the

coef®cients of degree higher than (n ÿ 1) of the kth coordi-

nation number and dividing by the dimension n of the net.

Determinations of topological densities are thus based on

the previous analysis of coordination sequences, usually

performed on empirical bases. Recently, the author of this

paper developed an algebraic method (Eon, 2002) based on

the paths and cycles of the quotient graph of the net to

calculate the generating functions for coordination sequences.

This work shows that complete knowledge of the generating

function is not necessary to calculate the topological density.

Instead, it is shown that an exact expression of the topological

density of the net is attached to some convex polytope asso-

ciated with the cycles of its quotient graph.

The fundamental concepts were already discussed in

previous papers and are brie¯y reviewed in x2 in order to

make the paper as self-contained as possible. Some of these

concepts, however, are presented in a more economical but

equivalent way. x3 develops a simple two-dimensional case to

introduce the new concept of the cycles ®gure and the method

proposed for topological density calculation. The next and

central section, x4, gives a formal description of the

construction and properties of the cycles ®gure, including its

relation to topological density. The formal demonstration of

the relationship is given in Appendix A in order to avoid

discontinuity of the discussion. xx5±11 provide an analysis of

several two- and three-dimensional nets of increasing struc-

tural complexity and give evidence of the ef®ciency of the

cycles ®gure as a practical tool, since the numerical values are

already known. The calculation of the topological densities of

n-dimensional diamonds and lonsdaleites and the determina-

tion of the generating function for the coordination sequence

of three-dimensional lattices are proposed as original appli-

cations in xx12±15.

2. Theoretical framework

Graph theory (see Harary, 1972) provides the framework to

the present analysis of crystal structures and associated nets.

The ®rst step is to extract topological information from

chemical data. An abstract in®nite graph is associated with a

crystal structure by mapping atoms to the vertices of the graph

and localized bonds between atoms to the edges of the graph.

n-dimensional nets are thus de®ned as in®nite graphs asso-

ciated with periodic structures in n-dimensional spaces.

Although two- and three-dimensional nets only are chemically

meaningful, it has proven valuable to extend the de®nition to

any dimension. It was shown for instance that the frameworks

of some structural types such as rock salt, rutile or feldspars

can be obtained by orthogonal projection of special embed-

dings of nets in higher dimensions (Eon, 1998). The quotient

graph of the net is then de®ned as the ®nite graph whose

vertices and edges map respectively the classes of transla-

tionally equivalent vertices and edges of the net, also called

point lattices and line lattices; the mapping must clearly

conserve adjacency relations. In general, we choose to work

with the primitive unit cell, in contrast to Blatov (2000), a

practice that drastically reduces the size of the quotient graph

without loss of information. A positive orientation is arbi-

trarily chosen for the edges of the quotient graph. Thus, if e =

uv is an edge with its positive orientation from vertex u to

vertex v, then ÿe = vu is orientated from vertex v to vertex u.

Consider, for example, the square net drawn in Fig. 1(a); there

is only one vertex per unit cell and two kinds of edges parallel
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to the principal crystallographic axes linking each vertex to an

equivalent neighbor. The quotient graph, shown in Fig. 1(b),

thus has one vertex and two loops since each edge closes to the

unique vertex; each loop can be traversed in both directions,

restoring the tetra valence of the vertex. In conformity with

the method developed by Chung et al. (1984), the loops (a and

b) were labeled in Fig. 1(b) by crystallographic vectors, which

completely de®nes the net from the quotient graph. It was

shown further that the factor group of the space group of the

crystal structure by the subgroup of its translations is generally

isomorphic to a subgroup of the automorphism group of the

quotient graph (Eon, 1998, 1999).

In opposition to previous works, 0-chains and 1-chains of a

graph G are de®ned here as formal linear combinations of

vertices and edges, respectively, with integer (positive or

negative) coef®cients. The support of the 1-chain l =
P

miei is

the directed subgraph formed by the edges ei with non-null

coef®cients, together with the incident vertices. The positive

orientation of the edge in the support is the same as in G if the

respective coef®cient mi is positive and opposite otherwise.

Two 1-chains are said to be incompatible when at least one of

the common edges has opposite orientations in the respective

supports. The length |l| of the 1-chain l =
P

miei is the total

number of combined edges, including repetitions: |l| =
P

|mi|.

The boundary operator @ is the linear operator mapping

1-chains to 0-chains and de®ned by @e = v ÿ u, for e = uv. A

graph G is said to be connected if, for any pair of distinct

vertices u and v, there is at least one 1-chain l of G for which

@l = v ÿ u. A walk w from u to v is a 1-chain with connected

support verifying @l = v ÿ u. The vertices u and v will also be

referred to as the end-points of the walk. A circuit is a walk

with null boundary (@l = 0), i.e. a closed walk. A 1-chain l is

said to decompose into a set of (possibly closed) walks wi if the

following conditions hold:

l �Pwi and jlj �P jwij:
Decompositions of a 1-chain into itself and possibly the null

chain are called trivial decompositions.

A path is then de®ned as a walk that cannot contain circuits

in any decomposition. Intuitively, the edges of a path are

traversed continuously between its two extremities without

passing more than once through each vertex. Analogously, a

cycle is a closed path and can be de®ned rigorously as a circuit

that cannot be decomposed further into smaller circuits, i.e.

non-trivial decompositions only contain a set of paths. The

quotient graph G, being a directed graph, induces an orien-

tation to its paths and cycles; the paths and cycles obtained by

reversing the orientation must then be considered as different

paths. A g-chain is a 1-chain that can be decomposed into one

path at most and a set of cycles. The g-chains of the quotient

graph deserve special attention because they map geodesics

(shortest paths) between vertices of the associated net. Their

set was endowed with a commutative ring structure denoted

Z[xG] (Eon, 2002).

In Z[xG], the sum of g-chains symbolizes the enumeration

of the respective geodesics of the net. The product of two

g-chains is another g-chain and represents an acceptable

decomposition of the latter; more exactly, the product was

de®ned in such a way as to generate a unique geodesic (up to

commutativity) to each vertex of the net from the ®nite set of

paths and cycles of the quotient graph. This fundamental

result was obtained by introducing zero divisors in the ring.

Three properties, namely incompatibility, parallelism and

short-cut conditions de®ne zero divisors.

First, the product of two paths as well as the product of two

cycles with incompatible support is null by de®nition. For

instance, in the g-chains ring of the quotient graph of the

square net, we set

xaxÿa � 0;

where the exponential notation xa has been used for the

g-chain associated with the cycle a. The second property,

parallelism, occurs when some g-chain can decompose into

different sets of g-chains. In this case, the products corre-

sponding to all decompositions but one must cancel. The last

property is associated with the existence of short-cuts, coming

from the presence of topological rings in the net. The product

of cycles involved in each ring must be set to zero.

It will be shown in Appendix A that topological density

depends exclusively on topological distances in the net

between the points of some given point lattice. In conse-

quence, only g-chains originating from the cycles of the

quotient graph are relevant to this investigation. In this case,

we observe that the three properties, incompatibility, paral-

lelism and short-cuts, can be expressed through what will be

called topological relationships. These are equalities in the

Figure 1
The square-planar net (a), its quotient graph (b) and its cycles ®gure (c).
The regions of the plane in (a) have been divided into axes and quadrants
by dashed lines parallel to the unit vectors. The hatching marks the region
represented by the edge associated with the product xaxb in the cycles
®gure (see text).



case of parallelism or inequalities in the case of incompat-

ibility and short-cuts, arising between the lengths of the cycles

of the labeled quotient graph involved in two different

decompositions of some g-chain (meaning that the sums of the

vector labels are equal in both members of the relationship).

We shall use the convention to set to zero the product of

g-chains given in the left member. The above incompatibility

of opposite cycles of the square net, for example, is a conse-

quence of the topological relationship

jaj � j ÿ aj � 2> j�0�j � 0; with of course a� �ÿa� � 0:

On the other hand, the determination of the generating

function for coordination sequences makes use of the cycles

part of the generator F (in short, the cycles generator) in the

g-chains ring, de®ned by the formula

F � Q
C

�
1�P

n>0

xnC
�
;

where the product is over all the (oriented) cycles C of the

quotient graph. This de®nition allows the generator to

encompass all possible combinations of cycles with repetitions.

To deal more easily with in®nite sums, it was observed that

each factor (1 +
P

n>0 xnC) has the inverse (1ÿ xC) in the ring,

which is easily checked by performing the product. This way,

we use preferentially the inverse generator:

Fÿ1 �Q
C

�1ÿ xC�:

The following section is an elementary illustration of these

concepts and helps to introduce the graphical method that is

developed in this paper as an alternative to calculating the

topological density of a net from its quotient graph.

3. Topological density of the square net

Consider again the two-dimensional square net 44. First, we

determine the inverse generator as de®ned above:

Fÿ1 � �1ÿ xa��1ÿ xÿa��1ÿ xb��1ÿ xÿb�:
With the compatibility condition taken into account (the only

one de®ning zero divisors in this net), the inverse generator

can be expanded into three terms, combining, respectively,

none, one and two loops:

Fÿ1 � 1ÿ �xa � xÿa � xb � xÿb�
� �xaxb � xÿaxb � xÿaxÿb � xaxÿb�:

Hereafter, we will call a product of m factors such as

xC1xC2 . . . xCm a term of order m. Fÿ1 is thus comprised of four

terms of ®rst order and four terms of second order. At this

point, we note that the generator F can be simply derived from

its inverse by substituting the in®nite sum SC �Pn>0 xnC for

each factor xC and positive signs for negative ones. This is an

immediate consequence of the formal analogy between single

factors in the de®nition of F and their inverse, and can further

be veri®ed by direct multiplication. We thus get

F � 1� �Sa � Sÿa � Sb � Sÿb�
� �SaSb � SÿaSb � SÿaSÿb � SaSÿb�:

A graphical interpretation of this expression, based on the

de®nition of the sum in the ring, has been schematized in Fig.

1(a): (i) the ®rst term of F (the constant 1 = x0) corresponds to

the origin of the lattice; (ii) the second term (combining one

loop at a time with all possible repetitions) generates all the

vertices of the square lattice localized on the principal axes,

each orientation at a time, and excluding the origin; and (iii)

the last term (combining two loops at a time) generates all the

vertices in the four quadrants of the plane de®ned by but

excluding the a and b axes. For example, the de®nition of the

multiplication and addition laws in the chain ring gives

SaSb � P
n>0

xna

� � P
n>0

xnb

� �
� P

m;n>0

xmaxnb � P
m;n>0

xma�nb;

which stands in F for the enumeration of all the vertices of the

lattice inside the ®rst quadrant. As expected, the generator F

provides the one-to-one mapping of the vertices of the square

net by g-chains of the quotient graph.

Since the relevant information about the whole lattice is

already contained in the inverse generator, we take it to de®ne

the cycles ®gure of the net as the polygon (drawn in the plane

of the two-dimensional lattice) whose vertices lie at the

extremities of the four lattice vectors mapped by the four

cycles (loops) of the quotient graph, which appear in the

second term of Fÿ1 (that is a, b, ÿa and ÿb); the edges of the

cycles ®gure, by de®nition, join the vertices corresponding to

the loops that are paired in the last term of Fÿ1. The cycles

®gure, in this case the square shown in Fig. 1(c), is a geome-

trical representation of the inverse generator. Its vertices

describe the terms of ®rst order and its edges the terms of

second order. The vertices mapping the two g-chains xa and xb

and the edge mapping their product xaxb have been speci®-

cally indicated in the ®gure. By comparison with the generator

F, we observe that the cycles ®gure provides a triangulation of

the sphere S1, referring to a mapping of all directions and

vertices of the plane in the following sense. The edge of the

cycles ®gure corresponding to the term xaxb of Fÿ1, for

example, stands in F for the product SaSb, which enumerates

all the vertices of the lattice inside the ®rst quadrant marked

by hatching on Fig. 1(a).

The calculation of the generating function G of the coor-

dination sequence is performed by mapping F on the ring of

rational functions of the real variable x. Each term SC must be

mapped on the function x|C|=(1 ÿ x|C|) (Eon, 2002).

G � 1� 4�x=�1ÿ x�� � 4�x=�1ÿ x��2
G � 1� 4x�1� x� . . .� xk � . . .�
� 4x2�1� 2x� . . .� kxkÿ1 � . . .�

G � 1� 4x� . . .� 4kxk � . . . :

After dividing by the dimension of the net, we get � = 2 (Ck =

4k) for the topological density of the square net, as expected.

The point is that we do not need the complete expression of

the generating function G to get the topological density. The
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relevant contribution is the coef®cient (4k ÿ 4) of xk coming

from the rational function 4[x=(1 ÿ x)]2, itself mapping the

terms of second order of the inverse generator. This is

obviously a consequence of the higher dimensionality of the

quadrant in comparison to the lattice axes. It follows that only

the higher-dimensional faces (in this case, the edges) of the

cycles ®gure need to be considered in the calculation of the

topological density. The next section is devoted to a formal

analysis of the properties of the cycles ®gure and its relations

to the cycles generator of the net.

4. Construction and properties of the cycles figure of a
net

The mathematical methods formalized in this section present a

large analogy to those of algebraic topology, a branch of

mathematics that translates topological problems into alge-

braic ones with the hope they will be solved more easily

(Wallace, 1973).

Consider any three-dimensional net with quotient graph G.

As mentioned in the second section, the characteristics of the

multiplication law in the corresponding chains ring, i.e. its zero

divisors, must be de®ned in such a way that the cycles

generator provides exactly one g-chain mapping a geodesic

from a given vertex to each translationally equivalent vertex

of the net. It is not always trivial, however, to formulate

unambiguously parallelism and short-cut conditions. The

geometrical construction of the cycles ®gure, considered as a

graphical representation of the inverse generator, is proposed

to remedy the dif®culty. Let us suppose we have already

obtained the expansion of the inverse generator in the chains

ring. Generalizing the previous two-dimensional example, we

describe how a polyhedron can be obtained, its vertices, edges

and faces corresponding respectively to the terms of ®rst,

second and third order of the inverse generator.

First, the star of G in E3 (the Euclidian three-dimensional

space) is de®ned as the set of lattice vectors mapped by the

cycles of the labeled quotient graph (the lattice vectors are

given by the sum of the labels along the edges of the cycle of G

and will be noted below by the same symbol as the cycle) and

drawn from some common origin. The star then maps part of a

point lattice. Moreover, it is invariant by the linear constitu-

ents of the symmetry operations of the space group of the

crystal structure, as proved in Appendix A. However, the

symmetry point group of the star is often higher than the

crystal class since the two opposite orientations existing for

each cycle ensure the presence of a center of symmetry.

Then, points in the direction of the vectors of the star are

marked on a sphere drawn from the origin; these points are

taken as the vertices of the cycles ®gure, and represent the

terms of ®rst order in the expansion of the inverse generator.

Let us say, for example, that the points A, B and C in the

directions of the lattice vectors associated with the cycles a, b

and c of G represent the terms xa, xb and xc. In simple cases,

the end-points of the vectors of the star can be used directly as

the vertices of the cycles ®gure.

Next, we notice that the expansion of the inverse generator

cannot contain terms of order higher than three. Indeed, it is

not possible to ®nd more than three independent vectors in E3.

Combinations of cycles of higher order should thus cancel in

the application of parallelism or short-cut conditions. Besides,

it is clear from the calculation given in Appendix B that any

term of fourth order, for instance, in the inverse generator

would give rise to a coordination number Ck in the form of a

polynomial of k of degree three, instead of two for a three-

dimensional net. Thus, we can use the terms of third order

such as xaxbxc in the expanded inverse generator to de®ne

triangular faces (ABC) between the respective vertices (A, B

and C) on the sphere. The terms of second order (xaxb, xbxc

and xaxc) corresponding to the three pairs of vertices of the

triangle cannot be zero divisors since the ternary product is

not null, and so they must be present in the expansion: they

de®ne the edges (AB, BC and AC) of the cycles ®gure.

Moreover, a term of third order, such as xaxbxc in the inverse

generator leads to a product of the form SaSbSc in the cycles

generator. If, as will be observed in general, the matrix of the

three lattice vectors a, b and c with respect to the basis vectors

of the unit cell is unimodular, then the vector set (a, b, c) can

be used as an equivalent basis for the lattice. Consequently, all

the vertices of some point lattice of the net in the solid angle

limited by the triangular face ABC are enumerated within the

product SaSbSc; since the role of the cycles generator is to

generate exactly once each vertex of the lattice, no super-

position of triangular faces is possible. These faces must meet

along one of their edges and each edge belongs exactly to two

such faces. The procedure leads then to a convex polyhedron

providing a complete triangulation of the sphere.

Conversely, a convex polyhedron can naturally be drawn

from the star of the quotient graph in many ways. Various

conditions must hold in order to identify this polyhedron to

the cycles ®gure of the net. It must be veri®ed that the edges of

the polyhedron are not associated with null products in the

chains ring and, conversely, that missing edges effectively

correspond to zero divisors. Polygonal faces must be triangu-

lated by introducing compatibility, parallelism or short-cut

conditions. All this can be done by considering the topological

relationships occurring between the cycles of G. If, for each

face of the cycles ®gure, the matrix of the lattice vectors

represented by its vertices with respect to the basis vectors of

the unit cell is unimodular, then the external surface of the

cycles ®gure can be used to determine the expression of the

inverse generator by reversing the procedure described above.

Note that the cycles ®gure is not uniquely determined since

parallelism is an arbitrary condition. An exact calculation of

the topological density of the net can then be derived as

explained in Appendix B. The result is formalized there to

avoid discontinuity of the discussion. For n-dimensional nets,

each (n ÿ 1)-face � of the cycles ®gure will be denoted by the

n-tuple (p, q, r, . . . ) of the lengths of the cycles mapping its

vertices. We de®ne the frequency of a vertex of the cycles

®gure as the inverse of the length of the cycle mapping the

respective vector of the star, and the frequency f(�) of the face

� as the product of the frequencies of its vertices: f(�) =



(pqr . . . )ÿ1. The topological density of the net is proportional

to Z, the number of vertices in the quotient graph, and to the

sum of the frequencies over its faces: � = Z{�� f(�)}=n!. The

following sections illustrate the many points of this discussion.

5. The kagome and b-W nets

In this section, we consider two simple plane nets and analyze

step by step the construction of their quotient graphs and

cycles ®gures. The kagome net (3.6.3.6) is shown in Fig. 2(a);

its quotient graph can be obtained and labeled using the

general vector method introduced by Chung et al. (1984). For

this purpose, the vertices and edges of the net have been

named within a unit cell chosen as the origin. There are three

vertices, namely A, B and C de®ning three point lattices and

six edges, called a to f, de®ning six line lattices. The three point

lattices and six line lattices give rise to the quotient graph K2
3

represented in Fig. 2(b). The vertices of each point lattice are

then labeled with the crystallographic vector corresponding to

the translation of the translation group from the equivalent

vertex inside the origin cell to the respective vertex. The edges

are labeled from the difference between the vector labels of

their end points. Edge d, for instance, links vertex B(01) to

vertex C, i.e. C(00), and is labeled (0ÿ1), written (01). The

resultant labeling of the quotient graph is given in Table 1.

By application of the algebraic method developed in Eon

(2002), the generating function of the coordination sequence

can be found to be

GF�x� � �1� 4x� 6x2 � 6x3 � 3x4 ÿ 2x5�=�1ÿ 2x2 � x4�:

A set of two coordination numbers is then deduced:

Ck � 5kÿ 2;

Ck � 4k� 2;

for even k

for odd k �k> 1�;C1 � 4:

The topological density is the mean value of the linear

coef®cients of k divided by 2, the dimension of the net: �= 9=4.

This result can be obtained directly by drawing the cycles

®gure of the net. By examination of the quotient graph, it is

seen that only six different cycles can be obtained, forming the

star {10,11,01,10,11,01}. The six vertices of this star determine

the hexagon shown in Fig. 2(c). Conventionally, each vertex of

the cycles ®gure will be labeled hereafter by the mapped cycle,

with its length given in parentheses. Note that two cycles of the

quotient graph have the same label (11), namely (a + c ÿ e)

and (c ÿ d). In this case, only the smaller length in the

respective direction must be considered. This amounts to

setting xa+cÿe = 0 in the chains ring, due to short-cut condi-

tions. It is also veri®ed that all products that do not correspond

to the sides of the hexagon cancel out by some short-cut

condition. Thus, looking at the quotient graph, we see that

xfÿexaÿb = 0, since the cycle (c ÿ d) is a short-cut to the circuit

(f ÿ e + a ÿ b) and consequently the cycles ®gure cannot

contain the edge whose end-points are mapped by the two

cycles (10) and (01). The same conclusion can be drawn more

trivially from the star itself by considering the following

topological relationship between its components:

j�10�j � j�01�j � 4> j�11�j � 2;

with of course �10� � �01� � �11�;

Acta Cryst. (2004). A60, 7±18 Jean Guillaume Eon � Topological density of nets 11
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Figure 2
The kagome net (a), its quotient graph K2

3 (b) and its cycles ®gure (c).

Table 1
Labeling of K2

3 for different nets.

a b c d e f

Kagome 01 00 10 01 00 10
�-W 01 00 00 10 00 01
Quartz 100 000 011 101 010 000

Figure 3
The �-W net (a) and its cycles ®gure (b).
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where |(11)| is used for the length of the shortest cycle with

labeling (11) in the quotient graph.

Since the six 1-faces of the cycles ®gure are of the type (2,2),

the topological density of the kagome net is given by (Z = 3):

� � 3f6�2:2�ÿ1g=2! � 9=4:

The �-W net is shown in Fig. 3(a). It has the same quotient

graph K2
3 as the kagome net, with its labeling given in Table 1.

In this case, the program TOPOLAN (Thimm et al., 1994) can

be applied to get simply the expression of the coordination

numbers.

Ck � 4kÿ 2;

Ck � 4k� 2;

for even k

for odd k;

which gives for the topological density

� � 2:

The star of the quotient graph is constituted by the eight

vectors {10,11,01,11,10,11,01,11}, de®ning as its cycles ®gure

a non-regular octagon schematized in Fig. 3(b). Short-cut

conditions associated with topological relationships clearly

hold as, for example, with |(11)| + |(10)| > |(01)|. Each 1-face is

of the type (2,3), and we verify (Z = 3):

� � 3f8�2:3�ÿ1g=2! � 2:

6. The (10, 3)-a net (O8)

Let us analyze some three-dimensional nets. The labeled

quotient graph, K4, of the (10,3)-a net (Wells, 1977) is

displayed in Fig. 4(a). By convention, null labels are not

reported on the graph. The star of K4 contains three vectors

associated with cycles of length 4 (4-cycles): (110), (011) and

(101), and four vectors associated with cycles of length 3

(3-cycles): (100), (010), (001) and (111), together with the

(seven) opposite cycles. The crystal class is O, which leads to

point group Oh for the star. As shown in Fig. 4(b), the 3-cycles

map the diagonals of the cubic non-primitive unit cell of the

net, while the 4-cycles map the directions orthogonal to the

faces of the cube, forming a rhombic dodecahedron; the 14

vertices de®ne 12 rhombus faces. However, the product laws

de®ned in the chains ring of the graph K4 ensure a unique

triangulation of this polyhedral surface. Indeed, it is easily

veri®ed that (a) in any pair of 4-cycles, the respective supports

are not compatible, as for (110) and (101). In the same fashion

(b), the only non-null products of 3-cycles arise when these

map the boundaries of some edge of the aforementioned cube,

as for (100) and (111), but not for (100) and (010), which has

the short-cut (110). Again (c), the support of any 4-cycle is

compatible with, and only with, the supports of the 3-cycles

mapping the vertices of the respective face of the cube, as for

(100) and (101), but not for (100) and (011). All these

observations can be cast as topological relationships:

�a� j�110�j � j�101�j> j�100�j � j�111�j;
�b� j�100�j � j�010�j> j�110�j;
�c� j�100�j � j�011�j> j�111�j:

Thus, if we draw the edges of the cube, which are associated

with a non-null binary product at the surface of the rhombic

dodecahedron, we obtain the cycles ®gure, as is shown in Fig.

4(b). Non-null ternary products are materialized by triangular

faces, while products of higher-order systematically cancel.

The cycles ®gure displays 24 2-faces of the type (4,3,3),

which leads to

� � 4f24�4:3:3�ÿ1g=3! � 4=9:

7. The diamond net (O7
hO7
h)

Fig. 5 shows the quotient graph K4
2 of the diamond net in the

primitive rhombohedral cell and its cycles ®gure. The star of

point group Oh contains the six vectors {100, 010, 001, 110, 101,

011} and the opposite ones, mapping the vertices of a cub-

octahedron, all of frequency 2. It is easily checked from the

compatibility condition that binary products of cycles cancel if

they are not mapped on some common face of the cubocta-

hedron. The condition is also equivalent to topological rela-

tionships, as for instance

j�100�j � j�101�j> j�001�j:
To achieve the required triangulation, it is necessary to

introduce the parallelism condition, canceling out the product

between two cycles that map an arbitrary pair of opposite

vertices on each square face of the cuboctahedron. Fig. 5(b)

illustrates one such possible choice, with for instance

j�100�j � j�011�j � j�010�j � j�101�j:Figure 4
The quotient graph of the (10, 3)-a net (a) and its cycles ®gure (b).



All 20 2-faces of the cycles ®gure are of the type (2,2,2), giving

� � 2f20�2:2:2�ÿ1g=3! � 5=6:

8. The quartz net (D4
6D4
6)

Table 1 gives the labeling of K2
3 (cf. Fig. 2b) as the quotient

graph of the �-quartz net. The star of point group Dh
6, with 20

vectors, forms the hexagonal prism shown in Fig. 6. The lateral

faces of the prism, however, have been cut horizontally into

two smaller rectangular faces. Parallelism conditions must be

applied to triangulate the hexagonal bases of the prism, as well

as the lateral rectangular faces along one of their diagonals. In

this case too, it is worth noting that these conditions are

equivalently given by topological relationships, such as:

j�111�j � j�100�j � j�110�j � j�101�j:
We ®nd 12 2-faces of the type (3,3,3) on the hexagonal bases

of the prism. On the lateral sides, we count 12 2-faces of the

type (3,3,2) and 12 of the type (3,2,2), leading to:

� � 3�12�3:3:3�ÿ1 � 12�3:3:2�ÿ1 � 12�3:2:2�ÿ1�=6 � 19=18:

However, if O atoms are inserted on the edges, the total

number of vertices triples while the length of each cycle

doubles. Thus, the correct topological density of the quartz net

turns out to be

� � �3=23��19=18� � 19=48:

9. The sodalite net (T1
dT1
d)

The quotient graph of the sodalite net is shown in Fig. 7(a). In

this case, as for more complex nets, it is hardly possible to

obtain the star of the quotient graph by hand; a code has been

developed by the author to get the results described below.

The triangulation of the sphere was also preferred to the

polyhedral representation of the cycles ®gure to draw the 26

vectors of the star. Based on the cubic symmetry of the star

(point group Oh), only one octant of the cycles ®gure is shown

in Fig. 7(b). The vectors (110), (101) and (011) correspond to

the cubic axes; the direction (111) is along the diagonal of the

cube while (211), (121) and (112) are oriented towards the

middles of the edges of the cube. Three topological relation-

ships of the same kind lead to the triangulation of the sphere.

Thus, for example:

j�121�j � j�211�j � 12> j2�111�j � j�110�j � 10:

On the whole sphere, we count 48 2-faces of the type (3,4,6),

giving for the topological density (Z = 6)

� � 6f48�3:4:6�ÿ1g=3! � 2=3:
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Figure 5
The quotient graph of the diamond net (a) and its cycles ®gure (b); the
diagonal lines dividing the square faces of the cuboctahedron indicate
non-null products based on parallelism considerations (see text).

Figure 6
The cycles ®gure of the quartz net.

Figure 7
The quotient graph of the sodalite net (a) and one octant of its cycles
®gure (b).
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10. The cancrinite net (C6
6C6
6)

The quotient graph of cancrinite is shown in Fig. 8(a). The

hexagonal symmetry (point group Ch
6 ) of the star limits the

discussion to the half superior part of a 60� sector of the cycles

®gure, shown in Fig. 8(b). Two kinds of topological relation-

ship occur:

j�102�j> j�101�j � j�001�j (short-cut);

j�100�j � j�211�j � j�101�j � j�210�j �parallelism�:

The vertices (102) and (112) have been left in the cycles ®gure

for the sake of completeness although they are set to zero in

the chains ring. They have obviously no contribution to the

triangulation.

Each of the twelve parts of the cycles ®gure evidences two

2-faces of type (2,6,10), two of type (6,6,10) and four of type

(6,10,10), giving (Z = 12)

� � 12:12f2�2:6:10�ÿ1 � 2�6:6:10�ÿ1 � 4�6:10:10�ÿ1g=3!

� 52=75:

11. The orthoclase net (C3
2hC3
2h)

The quotient graph of the orthoclase net and the superior part

(z > 0) of the cycles ®gure are shown in Figs. 9(a) and 9(b),

respectively. The vertices that have no contribution to the

triangulation have been left out for the sake of clarity. These

are (101), (011), (111), (012) and (112). Some of the topolo-

gical relationships occurring are listed below:

j�012�j � j�011�j � j�001�j
j�101�j � j�100�j � j�001�j
j�111�j � j�110�j � j�001�j
j�111�j � j�112�j � 13> j2�011�j � j�001�j � 11:

Many types of 2-faces are present on the whole sphere, namely

four of types (3,3,4), (3,3,7), (3,4,4), (3,4,7), (3,6,7), (4,4,5),

(4,5,6) and (4,6,7) and eight of type (3,4,6), giving (Z = 8)

� � 20=27:

12. The Zn lattice nets

Although the cycles ®gure is a strong geometrical guide that is

most useful for two- and three-dimensional nets, the method

can still be used in higher dimensions if the nature of the terms

of higher order of the cycles generator can be unraveled by

combinatorial analysis. The Zn lattice net is the simplest

possible example. Generalizing the square net, the quotient

graph of Zn has one vertex and n loops labeled (1000 . . . ),

(0100 . . . ) etc. Since each loop can be traversed in both

directions, the star has 2n vectors (1000 . . . ), (1000 . . . ) etc. It

is clear that the terms of higher order of the cycles generator

must contain each loop, oriented in one or other direction. The

number of such products (faces) is thus equal to 2n, and all

faces of the cycles ®gure are of frequency 1, which gives

(Z = 1)

� � 2n=n!

Figure 8
The quotient graph of the cancrinite net (a) and a 60� superior sector of
its cycles ®gure (b).

Figure 9
The quotient graph of the orthoclase net (a) and the half superior part of
its cycles ®gure.



13. The n-dimensional diamond net

O'Keefe (1991b) proposed a generalization of the diamond

net in higher dimension. The quotient graph has two vertices

linked by n + 1 edges labeled (0000 . . . ), (1000 . . . ), (0100 . . . )

etc., which will be noted i (i = 1, n + 1) or j (j = 1, n + 1) when

the edge is traversed in the positive or negative orientation,

respectively. All cycles have length 2 and the term of higher

order of the cycles generator contains n cycles ik jk indexed by

k = 1, n, possibly with repetitions among the edges ik and jk.

Suppose there are p different edges with positive orientation;

there are at most n + 1 ÿ p edges with negative orientation. In

fact, the number of edges with negative orientation cannot be

inferior to this number. Otherwise, the same product of cycles

of order n would be displayed by lower-dimensional diamond

nets, meaning that cycles ®gures in less than n dimensions

would present (n ÿ 1) faces. Thus, each set of p positive edges

determines some (n ÿ 1) face of the cycles ®gure and their

number is given by the binomial coef®cient C
p
n�1.

We now de®ne parallelism relationships (�) by noting that

they originate from exchange of the edges with negative

orientation in binary products: i1 j2 � i3 j4 � i1 j4 � i3 j2. Thus, we

can choose to set to zero the products for which the j sequence

is a decreasing function of the i sequence (14.23 = 0, for

example).

The cycles in some product of order n can be ordered by

increasing values of the i sequence from left to right. The

product can be represented by a set of n boxes (tu) separated

by p ÿ 1 walls (|),

tututujtutujtututujtu . . .tu;
where the i values occupy the boxes and are constant between

two walls. The j sequence can naturally be ordered by strictly

increasing values for constant values of i, between two walls.

From parallelism relationships, the j sequence is also

increasing from left to right. However, it cannot increase after

each wall since the total number of j values is exactly n ÿ
(p ÿ 1). Thus, the position of the walls completely determines

the form of the product. The ®rst element on the left corre-

sponds to the smallest i and j values. Between two walls ± and

before the ®rst wall or after the last one ± the i sequence is

constant and the j sequence increases; at each wall, the i value

increases with the j value remaining constant. The number of

such products, which can be interpreted as the triangulation

of the (n ÿ 1)-face, is given by the binomial coef®cient

C
pÿ1
nÿ1 � C

nÿp
nÿ1 .

Since all cycles have length 2 (and Z = 2), the topological

density is given by the following expression:

�n � 2
P

p�1;n

C
p
n�1C

nÿp
nÿ1

( ).
n!2n � Cn

2n=n!2nÿ1:

The last result can be obtained by identifying the coef®cient of

xn in the development of the two members of the identity

(1 + x)2n = (1 + x)n+1(1 + x)nÿ1. The result is in agreement with

the empirical values that were calculated by O'Keeffe (1991b)

up to n = 6.

14. The n-dimensional lonsdaleite net

The generalized n-dimensional lonsdaleite net was also

de®ned in O'Keeffe (1991b) as the packing of (n ÿ 1)-

dimensional diamond layers perpendicular to the nth dimen-

sion. The quotient graph is formed of two identical copies of

the (n ÿ 1)-dimensional diamond quotient graph linked by

two additional edges giving rise to 4-cycles, as shown (verti-

cally) in Fig. 10(a). The star contains the vectors xi de®ning the

directions inside the layer from the (n ÿ 1)-dimensional

diamond, and their combinations with the nth dimension (c)

denoted cxi and cxi in the following discussion. It is instructive

to look ®rst at the cycles ®gure of the three-dimensional net

which corresponds to a double hexagonal prism, as in the case

of the quartz net in Fig. 6 (but with different frequencies). This

prism can be built by elevation in the third dimension of the

two-dimensional cycles ®gure of the graphite net (two-

dimensional diamond), which is the hexagon drawn in the

horizontal plane. The argument can be extended to arbitrary

dimension and is ®rst discussed in dimension 4. To get the

cycles ®gure of four-dimensional lonsdaleite, a four-dimen-

sional prism (4-prism) has to be drawn by elevation of the

cuboctahedron (the cycles ®gure of diamond) in the 4th

dimension. The lateral faces of the 4-prism are themselves

3-prisms, which arise from the elevation of the triangular

2-faces of the cycles ®gure of diamond. Fig. 10(c) shows such

a 3-prism based on the 2-face x1.x2.x3; the elevated 2-face of

this 3-prism is cx1.cx2.cx3. Exactly as the rectangular 2-face

(2-prism) of the hexagonal prism must be triangulated in

three-dimensional lonsdaleite (see Fig. 10b), the triangular

3-prism must be triangulated, that is divided into tetrahedral

simplexes by introducing new topological relationships

between the vertices of their 2-faces. By setting x2.cx1 = x3.cx1 =

x3.cx2 = 0 in Fig. 10(c), for instance, we get the three simplexes:

x1.cx1.cx2.cx3, x1.x2.cx2.cx3 and x1.x2.x3.cx3.
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Figure 10
The quotient graph of the n-dimensional lonsdaleite net (a), triangulation
of the two-dimensional prism (b) and the three-dimensional prism (c).
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The topological relationships can now be formulated in

general. Let xi and xj be vertices of the star within the (n ÿ 1)-

dimensional diamond layer; they are submitted to the same

relationships as described in the previous section. If two such

vertices belong to the same face of the cycles ®gure of the

(n ÿ 1)-dimensional diamond layer, the respective prismatic

face of the cycle ®gure obtained after elevation is triangulated

by setting xi.cxj = 0 whenever i > j. Moreover, if xi.xj = 0, we set

xi.cxj = 0 and cxi.cxj = 0.

Let x1.x2.x3 . . . xnÿ1 be some face of the (nÿ 1)-dimensional

diamond layer: the number of such faces was seen above to be

the binomial coef®cient Cnÿ1
2nÿ2. The prism based on each such

face is then subdivided into the n ÿ 1 (lateral) simplexes

(Wallace, 1973): x1.cx1.cx2.cx3 . . . cxnÿ1 (of frequency 21ÿ2n),

x1.x2.cx2.cx3 . . . cxnÿ1 (of frequency 22ÿ2n) . . . , x1.x2.x3 . . .
xnÿ1.cxnÿ1 (of frequency 2nÿ1ÿ2n), to which the face in the c

(superior) direction, c.cx1.cx2.cx3 . . . cxnÿ1 (frequency 2ÿ2n),

must be added. After equal subdivision on the inferior (c) side,

the topological density can be calculated:

�n � 8�2n ÿ 1�Cnÿ1
2nÿ2=n!:22n:

15. Coordination sequences of three-dimensional
lattices

The cycles ®gure can be regarded as a geometrical simplicial

complex (Wallace, 1973) providing a polyhedral representa-

tion of the product law in the chains ring. In two- and three-

dimensional nets, it offers a geometrical support for an

immediate calculation of the topological density of the net, but

it can also be used as a tool to calculate the complete coor-

dination sequence through its generating function. To illus-

trate this point, we prove an interesting result proposed by

O'Keeffe (1995) for three-dimensional lattices.

In lattices, in contrast to more general nets, all vertices are

translationally equivalent, which means that the quotient

graph has a unique vertex and multiple loops. Let z be the

coordination number of the vertex in the lattice; z is twice the

number of loops, and so an even number. Since the star of the

quotient graph contains just the loops in both orientations, the

cycles ®gure has exactly V = z vertices. Let F and E be the

number of faces and edges of the cycles ®gure, respectively.

After triangulation, every face has three edges, each one being

shared by another face, giving E = 3F=2. Using the Euler

equation (F ÿ E� V � 2), we ®nd:

E � 3�zÿ 2�;
F � 2�zÿ 2�:

All loops have length 1 and contain the unique vertex of the

quotient graph; no correction for connectedness is needed

when mapping the cycles generator to the generating function

for the coordination sequence, so that we obtain:

G�x� � 1� V�x=�1ÿ x�� � E�x=�1ÿ x��2 � F�x=�1ÿ x��3
G�x� � 1� zx�1� x� . . .� xk � . . .�

� 3�zÿ 2�x2�1� 2x� . . .� kxkÿ1 � . . .�
� 2�zÿ 2�x3�1� 3x� . . .� k�kÿ 1�xkÿ2=2� . . .�;

which gives for the kth coordination number:

Ck � z� 3�zÿ 2��kÿ 1� � �zÿ 2��kÿ 1��kÿ 2�
� �zÿ 2�k2 � 2:

A more detailed investigation of cycles ®gures in general is

needed in order to analyze other higher n-dimensional lattices.

APPENDIX A
Point symmetry of the star

We begin with the special embedding N of a three-dimensional

net obtained by locating the points mapping its vertices at the

atomic positions of the crystal structure in E3, and forming the

lines mapping its edges by joining points representing adjacent

vertices by straight lines. In this case, the embedding is

invariant by the symmetry operations 
 of the space group ÿ
of the crystal, which is then isomorphic to a subgroup of the

automorphism group of the net. For simpli®cation, we shall

not distinguish between the net and its embedding, nor

between the automorphism of the net and the respective

symmetry operation of the embedding. Let ' be the mapping

of vertices and edges of the net to their class of translationally

equivalent vertices and edges, i.e. the point and line lattices of

the embedding, which constitute the vertices and edges of the

quotient graph G. This mapping induces naturally a linear

mapping of the chains (0-chains and 1-chains) of the net on the

chains of G. It is easy to check that ' commutes with the

boundary operators @N in N and @G in G (@G' = '@N). We note

moreover that the boundary operator also commutes with any

automorphism of ÿ. Consider now a path V of the net which is

mapped by ' on a cycle C of the quotient graph, as schema-

tized in the diagram below.

' : V 2 N ! C 2 G

# 
 2 ÿ # a 2 Aut�G�
' : V 0 2 N ! C0 2 G:

Both end-points of V are then mapped on the same vertex of

G, and so belong to the same point lattice in N whereas all

other vertices along the path belong to different point lattices.

In other words, all the vertices along the path V� obtained

from V by subtraction of its last edge belong to different point

lattices. The difference vector in E3 between the two end-

points of the path V is then a lattice vector S of the embedding

associated with a cycle of G, i.e. it belongs to the star of G and

its Miller indices can be obtained by adding the vector labels

of the edges along the cycle C in G (Chung et al., 1984).

A symmetry operation 
 of the space group ÿ maps the

paths V and V� on equivalent, possibly equal, paths V0 and V�0



of the net, respectively. In particular, all the vertices of V�0

must belong to different point lattices. It is easy to check that

V0 is mapped by ' on a cycle C0 of G. Indeed, the end-points of

V0 must belong to the same point lattice since this is the case

for the end-points of V. The 1-chain '(V0) is thus a circuit of G.

If it were not a cycle, it would decompose into at least two

smaller circuits of G (by de®nition of a circuit). But then, the

1-chain '(V�0) would be equal to the sum of these circuits

minus one edge of G, i.e. would decompose in at least one

circuit. Thus, at least two vertices along V�0 would belong to

the same point lattice, which contradicts the observation made

above. This proves that C0 is a cycle of G (indeed, 'maps 
 on

an automorphism a of G, as indicated in the above diagram).

Clearly, the difference vector S0 between the end-points of V0

belongs to the lattice of the embedding and corresponds to the

symmetry transformed of the vector S by the linear constituent

of 
. This shows that S0 belongs to the star of G and completes

the proof that the star is invariant by the linear constituents of

the symmetry operations of the space group.

APPENDIX B
Calculation of topological density

We begin with a useful remark concerning generating func-

tions G =
P

k Ckxk, where the coordination numbers Ck form

a periodic set of quadratic polynomials of k. Consider the

product G0= xmG =
P

kCkxk+m, where m is any integer such

that all q = k + m values are positive. By performing the

change k = q ÿ m in the polynomials Ck, these can clearly be

written out as a new periodic set C0q of quadratic polynomials

of q, with the same coef®cients of degree two, and the same

periodicity so that G0 =
P

qC0qxq. We will refer to this as the

asymptotic property of generating functions.

The method proposed here to calculate the topological

density of a three-dimensional net is based on the triangula-

tion of the sphere given by the cycles ®gure of its quotient

graph. As shown in x4, any given 2-face representing the

product xaxbxc of the inverse generator stands for all the points

of some reference-point lattice inscribed within the solid angle

de®ned by the three corresponding vectors of the star (a, b, c).

The contribution of the reference point lattice to the topo-

logical density in this solid angle is determined separately, as

shown below, as the coef®cient of higher degree of some

coordination numbers Ck, written as a periodic set of quadratic

polynomials of k. Before doing this, however, we show that all

point lattices give an equal contribution to the topological

density of the net in the same solid angle. This can be seen by

using the path part of the inverse generator (Eon, 2002); the

points of any other point lattice are described in the inverse

generator by some g-chain of the form xp(xaxbxc), where p is a

shortest path of the quotient graph between the vertices

mapping the respective point lattices, and compatible with the

three cycles a, b and c. This g-chain introduces a new contri-

bution x|p|Ckxk in the generating function (with possibly some

connectedness correction which can be dealt with in the same

way). The result claimed follows immediately from the

asymptotic property. In each solid angle, thus, all point lattices

contribute the same value to the topological density, which is

then proportional to the number Z of vertices contained in the

unit cell.

On the other hand, only the triangular faces of the cycles

®gure need be considered in the determination of the topo-

logical density of three-dimensional nets. Indeed, edges and

vertices of the cycles ®gure contribute polynomials of lower

degrees to the expression of the coordination number, as the

same argument developed below would demonstrate.

Let us look at the contribution of a 2-face associated with

three cycles a, b and c of length p, q and r. The product xaxbxc

in the cycle generator is mapped on the rational function

G � x��xp=�1ÿ xp���xq=�1ÿ xq���xr=�1ÿ xr��;
where � is the (possibly null) correction for connectedness

(Eon, 2002).

Let d be the highest common divisor of p, q and r; we write

with a prime the corresponding factor, for instance: p = dp0. G

is then factorized,

G � x��p�q�r�1=�1ÿ xd��3�1=�1� xd � . . .� xpÿd��
� �1=�1� xd � . . .� xqÿd���1=�1� xd � . . .� xrÿd��

and decomposed into simple elements. The only relevant term

(leading to coordination number of degree two) arises from

the ®rst, cubic, rational function, since it aggregates the roots

of higher multiplicity.

G � x��p�q�r��=�1ÿ xd�3� � (terms of lower multiplicity):

The constant � is obtained after multiplication by (1 ÿ xd)3,

then making x = 1 in the last two expressions:

� � 1=p0q0r0:

Now, from multiple derivation of the simple function 1=(1ÿ x)

relative to the variable x, we get the expansion of the cubic

factor:

�1=�1ÿ x��3 �P
k

�k�kÿ 1�=2�xkÿ2

or

�1=�1ÿ xd��3 �P
k

�k�kÿ 1�=2�xd�kÿ2�;

with the summation index k running over the set of positive

integers. We observe that the coef®cients of the powers of x

are quadratic polynomials of k with trivial periodicity equal to

d, since only one among d successive coef®cients is different

from zero. The same reasoning would show that edges and

vertices of the cycles ®gure contribute linear and constant

polynomials of k, respectively, to the coordination numbers.

Considering the periodic set of quadratic polynomials Ck

along the period d, the mean value m(Ck) of the coef®cient of

degree two is independent of the factor x�+p+q+rÿ2d, as a

consequence of the asymptotic property, and is given by

identi®cation:

k2m�Ck� � ���=2��k=d�2�=d � k2�2pqr�ÿ1:

Taking all the faces of the cycles ®gure as well as the number Z

of vertices of the quotient graph and the dimension (3) of the
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net into account, the expression for the topological density of

three-dimensional nets is ®nally obtained:

� � �Z=6�P
�

�pqr�ÿ1;

where the sum refers to all triangular faces, �, of the cycles

®gure.

The above arguments are clearly not restricted to three

dimensions and can be generalized to obtain the topological

density of n-dimensional nets:

� � Z
P
�

hQ
i

pÿ1
i

i.
n!;

where the sum runs over all (nÿ 1)-dimensional faces � of the

cycles ®gure and the product over the n vertices pi of the face.
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